Exercise 2

Use the noise terms phenomenon to solve the following Volterra integral equations:

$$
u(x)=6 x+3 x^{2}-\int_{0}^{x} x u(t) d t
$$

[TYPO: The second term on the right should be $3 x^{3}$ in order to get the answer at the back of the book.]

Solution

Assume that $u(x)$ can be decomposed into an infinite number of components.

$$
u(x)=\sum_{n=0}^{\infty} u_{n}(x)
$$

Substitute this series into the integral equation.

$$
\begin{aligned}
& \sum_{n=0}^{\infty} u_{n}(x)=6 x+3 x^{3}-\int_{0}^{x} x \sum_{n=0}^{\infty} u_{n}(t) d t \\
& u_{0}(x)+u_{1}(x)+u_{2}(x)+\cdots=6 x+3 x^{3}-x \int_{0}^{x}\left[u_{0}(t)+u_{1}(t)+\cdots\right] d t \\
& u_{0}(x)+u_{1}(x)+u_{2}(x)+\cdots=\underbrace{6 x+3 x^{3}}_{u_{0}(x)}+\underbrace{x \int_{0}^{x}\left[-u_{0}(t)\right] d t}_{u_{1}(x)}+\underbrace{x \int_{0}^{x}\left[-u_{1}(t)\right] d t}_{u_{2}(x)}+\cdots
\end{aligned}
$$

If we set $u_{0}(x)$ equal to the function outside the integral, then the rest of the components can be deduced in a recursive manner.

$$
\begin{aligned}
& u_{0}(x)=6 x+3 x^{3} \\
& u_{1}(x)=x \int_{0}^{x}\left[-u_{0}(t)\right] d t=-x \int_{0}^{x}\left(6 t+3 t^{2}\right) d t=-3 x^{3}-x^{4}
\end{aligned}
$$

The noise terms $\pm 3 x^{3}$ appear in both $u_{0}(x)$ and $u_{1}(x)$. Cancelling $3 x^{3}$ from $u_{0}(x)$ leaves $6 x$. Now we check to see whether $u(x)=6 x$ satisfies the integral equation.

$$
\begin{aligned}
& 6 x \stackrel{?}{=} 6 x+3 x^{3}-\int_{0}^{x} 6 x t d t \\
& 6 x \stackrel{?}{=} 6 x+3 x^{3}-3 x^{3} \\
& 6 x=6 x
\end{aligned}
$$

Therefore,

$$
u(x)=6 x .
$$

